A transversal approach for patch-based label fusion via matrix completion

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlocal Patch-Based Label Fusion for Hippocampus Segmentation

Quantitative magnetic resonance analysis often requires accurate, robust and reliable automatic extraction of anatomical structures. Recently, template-warping methods incorporating a label fusion strategy have demonstrated high accuracy in segmenting cerebral structures. In this study, we propose a novel patch-based method using expert segmentation priors to achieve this task. Inspired by rece...

متن کامل

Sparse Patch-Based Label Fusion for Multi-Atlas Segmentation

Patch-based label fusion methods have shown great potential in multi-atlas segmentation. It is crucial for patch-based labeling methods to determine appropriate graphs and corresponding weights to better link patches in the input image with those in atlas images. Currently, two independent steps are performed, i.e., first constructing graphs based on the fixed image neighborhood and then comput...

متن کامل

Matrix Completion for Multi-label Image Classification

Recently, image categorization has been an active research topic due to the urgent need to retrieve and browse digital images via semantic keywords. This paper formulates image categorization as a multi-label classification problem using recent advances in matrix completion. Under this setting, classification of testing data is posed as a problem of completing unknown label entries on a data ma...

متن کامل

Colorization by Patch-Based Local Low-Rank Matrix Completion

Colorization aims at recovering the original color of a monochrome image from only a few color pixels. A stateof-the-art approach is based on matrix completion, which assumes that the target color image is low-rank. However, this low-rank assumption is often invalid on natural images. In this paper, we propose a patch-based approach that divides the image into patches and then imposes a low-ran...

متن کامل

Multi-view Weak-label Learning based on Matrix Completion∗

Weak-label learning is an important branch of multi-label learning; it deals with samples annotated with incomplete (weak) labels. Previous work on weak-label learning mainly considers data represented by a single view. An intuitive way to leverage multiple features obtained from different views is to concatenate the features into a single vector. However, this process is not only prone to over...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Medical Image Analysis

سال: 2015

ISSN: 1361-8415

DOI: 10.1016/j.media.2015.06.002